First measurements of VOC fluxes by eddy covariance with a PTR-QI-TOF-MS on a wheat barley field at anthesis at the FR-GRI ICOS site

ADEME

Analysis and Experimentation on Ecosyste France

Benjamin LOUBET, Olivier ZURFLUH, Raluca CIURARU, Pauline BUYSSE, Florence LAFOUGE, Céline DECUQ, Olivier FANUCCI, Jean-Christophe GUEUDET ECOSYS, UMR INRA, AgroParisTech, Université Paris-Saclay, France Roland SARDA-ESTEVE, Nora ZANONNI, Christophe BOISSARD and Valérie GROS LSCE, UMR CNRS-CEA, France

Journées ICOS France 08 / 11 / 2016 - 09 / 11 / 2016

Overview

- Context
- Material and methods
- Eddy covariance fluxes
- Conclusions
- Next steps

- Volatile organic compounds (VOC) as an atmospheric pollutant
 - VOC are precursors of ozone and secondary organic aerosols
 - 80% of COV are from biological sources
 - In Europe: 55% forest, 27% agriculture, 18% grasslands

- Emissions by agriculture are not well documented
 - Which compounds and seasonality ?
 - Manure and farmyard applications ?
 - Litter decomposition and residue incorporation ?
 - Emissions by farms, storage?

{Twigg, 2011 #5391}

 VOC may be a proxy to better understand microbial processes (Sugar and fatty acid degradation, alcoholic fermentation, aminoacid biosynthesis, sulphur reduction)

{Leff, 2008 #7407}

Carbon losses by VOC in litter may be of same order as CO₂

{Gray, 2012 #7449}

Existing VOC emissions databases are weak

{Keenan, 2009 #5483}

Objectives of the COV³ER project

- To measure the VOC fluxes
 - Over representative crops and forest ecosystems in France
 - Over slurry and farmyard applied in the field
- To use direct measurement techniques
 - At the canopy scale (Eddy covariance)
 - At the plant, branch and litter scale (dynamic chambers)
- To demonstrate the capability of the ANAEE-France PTRMS service

COV biogéniques : Emissions par les Ecosystèmes gERés

Material and methods: the PTR-TOF

Lafouge et al. (2015)

Material and methods: the PTR-TOF

Example of mass spectra from a standard with 14 compounds at 110 ppb

Lafouge et al. (2015)

Fr-Gri: crop site

Soil type : luvisol (loamy clay) (25%Cl, 70% Si, 5% Sa)

bilan C C (import-export) NE 2015 2014 2013 Cow and 2012 2011 2010 sheep farm 2009 2008 2007 2006 2005 2004 -10 Sub-urban Wheat, maize, oilseed rape Loubet et al. (2016)

Material and method

- 1 June 20 July 2016 (Wheat @ maturity towards senescence)
- Fongicides applied the 4 June
- ICOS measurements (met, soil, CO₂/H₂O)
- Additional measurements
 - QCL N₂O/CH₄/H₂O eddy covariance fluxes, O₃, NOx, NMHC (LSCE), OH reactivity (LSCE)
- PTR-TOF-MS measurements
 - VOC concentrations and VOC fluxes by Eddy covariance
 - VOC profile in the canopy
 - Plant and soil chambers VOC an OH reactivity on wheat

Photosynthesis, PAR, Temperature profiles

The principle of Eddy covariance

Material and method: acquisition

Results: VOC concentrations profiles

Results: Eddy covariance method

Lag time was very stable on mass 37 (water cluster) ~ 2 seconds

Results: Some compounds emitted

Results: Some compounds emitted

Results: Some compounds depositing

Results: control with H₂O and CO₂

Calibration of the reaction rate as function of conditions

Results: control with H₂O and CO₂

Calibration of the reaction rate

Results: Is mass resolution correct?

Results: VOC spectra

Which compounds were emitted by the wheat?

ketones	aldehydes	alcohols	alkenes	dienes		acids	
						octe	noic acid or
acetone	acetaldehyde	methanol	propene	isoprene + MBO		hexenyl acetate	
				hexadiene or			
butanone MEK	Formaldehyde		pentene	C6 green leaf volatiles		acid acetique	
				ISOPOOH			
Ethyl vinyl ketone (pentenone) or				(unsaturated hydroperoxides			
pentenal or cyclopentanone			heptene	from isoprene oxidation)		bute	noic acid
pentanal/pentanone or							
methyl butenol (MBO) or pentenol			hexene	thymol or cymenol			
MVK+MAKR		N compou	N compounds		Aromatic compounds		S compounds
	References and						
	CALL REAL	pyridine	pyridine		Methoxybenzene		DMS
and the second second second second	Enterine St	20	nunulamina autrimathulamina		are motion CO attack and an		
	Halley	propylam	propylamine or trimethylamine		aromatic C8 ethylbenzene		
States and the second second	以他们都认识了						
The A PERSON NEW YORK		Acetonitri	le	benzene			

Conclusions

- Eddy covariance was set up in Fr-Gri with new PTR-TOF-MS
- The method was successful for measuring both emissions and depositions of VOC
- Emissions of methanol, acetaldehyde, acetone, DMS
- Some compounds were deposited
- Bi-directional fluxes were observed
- CO₂.H⁺ was measured although CO₂ should not be protonated.

Next steps

Analyze the data further

- Validate lag time for all masses
- Identify each compounds (GC)
- Calculate total carbon fluxes

Improve Calibration

- ppt range zeroing
- Document transmission of the instrument for most masses
- **Prepare next experiments**
- Grignon (oilseed rape : april 2017)
- Oak forest (Barbeau 2017), green oak (Puechabon 2018)
- Seasonal dynamic chamber measurements in Grignon 2017-2018

SCIENCE & IMPACT

Thanks!

groParisTech

INSTITUT DES SCIENCES ET INDUSTRIES DU VIVANT ET DE L'ENVIRONNEMEN PARIS INSTITUTE OF TECHNOLOGY FOR LIFE, FOOD AND ENVIRONMENTAL SCIENCES

ADEME

Agence de l'Environnement et de la Maîtrise de l'Energie

PTR-MS ANAEE service Open to collaboration in

France